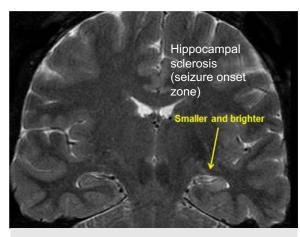


A PHASE I/II CLINICAL TRIAL OF NRTX-1001 HPSC-DERIVED INHIBITORY INTERNEURON CELL THERAPY FOR CHRONIC FOCAL EPILEPSY

Cery Nicholas, PhD CEO, Co-founder Neurona

• I am an employee and shareholder of Neurona Therapeutics.


Drug-refractory Focal Epilepsy is a Significant Unmet Medical Need

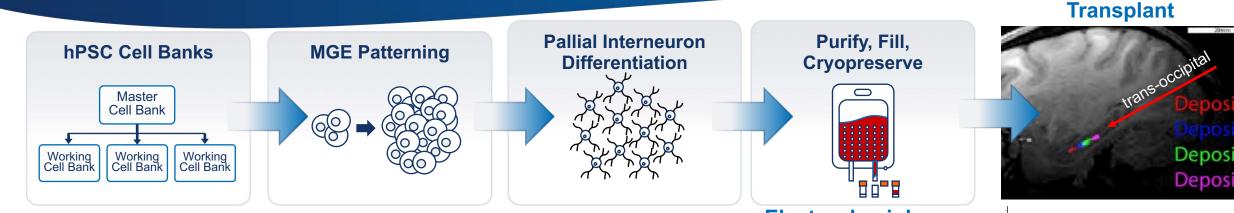
All Epilepsy ~3 M (adult prevalence, US)

Focal Epilepsy ~2 M

Refractory Focal Epilepsy ~600 K

Temporal Lobe Sclerosis

Temporal Lobectomy

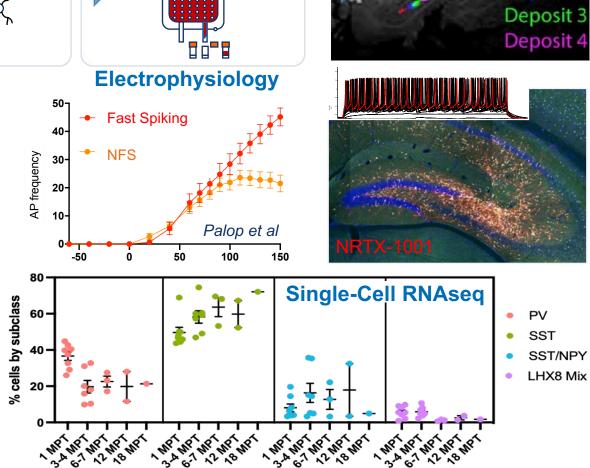

- Temporal lobe epilepsy (TLE) is the most common type of adult focal epilepsy
 - ~30% are drug-resistant
- Lobectomy/ablation surgery to destroy the temporal lobe can be an option but risks irreversible adverse effects on cognition
 - Many not inclined due to safety risk (eg. memory loss)
 - Many not eligible (eg. dominant lobe or bilateral TLE)

Regenerative cell therapy could potentially provide:

- Safer, non-destructive alternative to lobectomy
- A first disease-modifying option for those not eligible for lobectomy

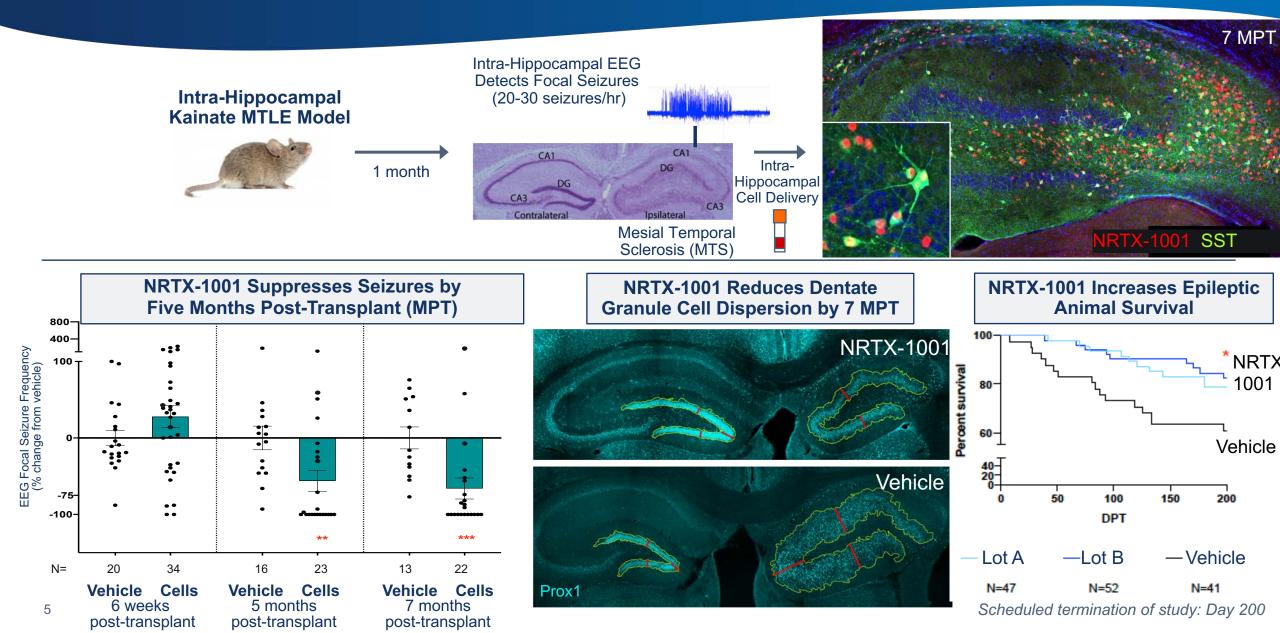
NRTX-1001: MGE Pallial-type GABAergic Interneurons derived from Human Pluripotent Stem Cells

• Allogeneic & Cryopreserved: MRI-guided intracerebral delivery (single-dose)


Lineage-Specific:

<u>MGE pallial-type</u> GABAergic interneurons (SST/PV)

Stage-Specific:


Post-mitotic migratory stage, no proliferation

• Functional Integration: Form synapses & fire action potentials

Preclinical Efficacy: NRTX-1001 is Disease-modifying in a Mouse Model of Chronic Mesial Temporal Lobe Epilepsy (MTLE)

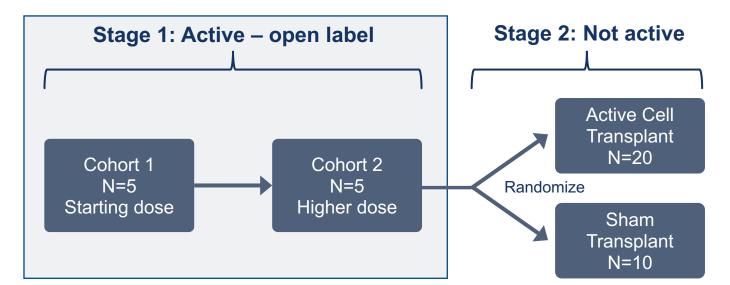
Phase I/II Clinical Study: NRTX-1001 for Drug-resistant MTLE (NCT05135091)

Design: Safety and efficacy study in adult subjects with chronic unilateral MTLE (lobectomy candidates)

Delivery: Single MRI-guided administration of cells into hippocampus

Immunosuppression: 1 year

Primary Endpoint (1yr Safety):

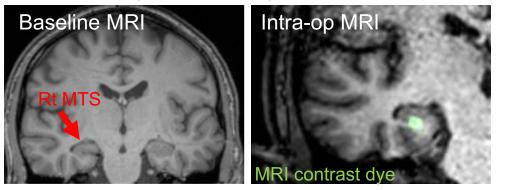

• Frequency of adverse events

Secondary Endpoint (1yr Efficacy):

- Reduction in seizure frequency
- Responder rate

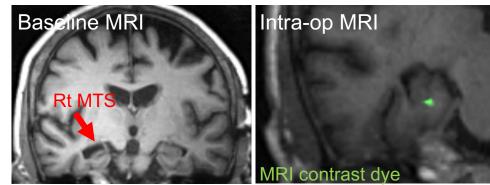
Other Endpoints:

- Neurocognitive outcomes
- EEG, imaging, and blood biomarkers
- Anti-seizure drug dose reduction


12 clinical sites active in US

Duke
Stanford
UWisconsin
UUtah
UColorado
UCLA

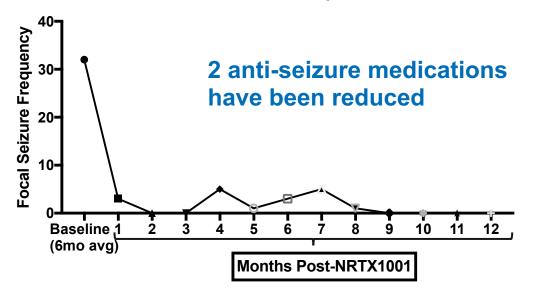
Emerging Data from First Two Subjects Dosed with NRTX-1001



Subject #1: 26yr old male

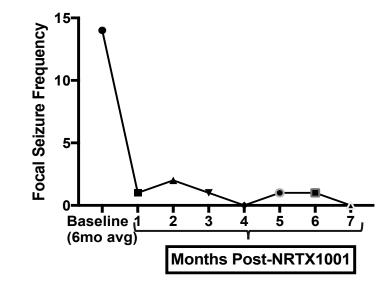
- Averaging 32 seizures/month in the 6 months prior to dosing
- 7-year history of seizures with right MTS
- Clobozam, lacosamide, levetiracetam, lorazepam, oxcarbazepine

Subject #2: 59yr old female


- Averaging 14 seizures/month in the 6 months prior to dosing
- 9-year history of seizures with right MTS
- Clobozam, lacosamide, levetiracetam, lorazepam, midazolam
- NRTX-1001 delivered on-target
- No structural abnormalities or inflammation by MR
- No SAEs to date

Safety board cleared study to continue enrolling both dominant and non-dominant lobe MTLE

All Seizure Events per Month



95% overall monthly seizure reduction post-NRTX1001:

- 95% reduction of focal aware
- 95% reduction of focal impaired awareness

Subject #2: 59yr old female

All Seizure Events per Month

94% overall monthly seizure reduction post-NRTX1001:

- 100% reduction of focal aware
- 57% reduction of focal impaired awareness

As of 4/28/23: (7mo data not yet monitored, preliminary)

No Detectable Cognitive Decline, and Potential Improvement, after Single-dose Administration of NRTX-1001

Subject #2:

	Subject #1: 26yr old male						5		d female
	Normal Adult	Base line	6- month	9- month			Normal Adult	Base line	6- month
Boston (total)	54 +/- 4	50	57	55	Word Retrieval	Boston (total)	54 +/- 4	58	54
RAVLT (sum trials 1-5)	46 +/- 10	27	34	34		RAVLT (sum trials 1-5)	46 +/- 10	36	36
RAVLT (trial 6)	5 +/- 2	3	5	3	Verbal	RAVLT (trial 6)	5 +/- 2	2	4
RAVLT (delayed recall 7)	9 +/- 3	2	7	7	Memory	RAVLT (delayed recall 7)	9 +/- 3	4	8
RAVLT (delayed recall 8)	9 +/- 3	2	6	4		RAVLT (delayed recall 8)	9 +/- 3	4	3
BVMT delayed recall	10 +/- 2	6	10	10	Visuo-	BVMT delayed recall	10 +/- 2	6	6
BVMT % retained	93 +/- 10%	67%	91%	100%	Spatial Memory	BVMT % retained	93 +/- 10%	67%	75%

Т.

Red = outside of normal adult range

Neurocognitive scores increased at 6 and 9 months post-NRTX-1001

Red = outside of normal adult range

Select neurocognitive scores numerically increased by 6 months post-NRTX-1001

NRTX-1001: Next Clinical Studies Planned

Indication	2023				2024				2025
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
#1 NRTX-1001: Unilateral MTLE Ongoing Trial									
#2 NRTX-1001: Bilateral MTLE									
#3 NRTX-1001: Neocortical Focal Epilepsy									
#4 NRTX-1001: Alzheimer's + Hyperactive EEG									

Robert Beach, MD, PhDHarish Babu, MD, PhD

CALIFORNIA'S STEM CELL AGENCY